Circulo de Mohr - ALIPSO.COM: Monografías, resúmenes, biografias y tesis gratis.
Aprende sobre marketing online, desarrollo de sitios web gratis en Youtube
Suscribite para recibir notificaciones de nuevos videos:
Martes 28 de Enero de 2025 |
 

Circulo de Mohr

Imprimir Recomendar a un amigo Recordarme el recurso

Interpretacion grafica de tensiones bidimensionales utilizada para una cincunferencia.

Agregado: 24 de MAYO de 2000 (Por ) | Palabras: 753 | Votar |
3 votos | Promedio: 7
| Sin comentarios | Agregar Comentario
Categoría: Apuntes y Monografías > Matemáticas >
Material educativo de Alipso relacionado con Circulo Mohr
  • Biografia y vida de Friedrich Mohr: Breve Biografia de Friedrich Mohr
  • Circulo de Mohr: Interpretacion grafica de tensiones bidimensionales utilizada para una cincunferencia.

  • Enlaces externos relacionados con Circulo Mohr

    CIRCULO DE MOHR.

    Las formulas establecidas en la sección anterior se pueden utilizar en cualquier caso de un estado de tensiones bidimensionales, pero existe una interpretación grafica de estas formulas debida al ingeniero Otto Mohr en el año 1882. en esta interpretación se utiliza una circunferencia, por lo que se ha llamado circunferencia de Mohr. Realizado el dibujo a escala se pueden obtener se pueden obtener los resultados gráficamente, aunque en general solo se suelen utilizar como esquema, y los resultados se obtienen analíticamente como se vera mas adelante.

    Las ecuaciones sig. Son las ecuaciones paramétricas de una circunferencia.

    Ox + Oy = Ox - O cos 2Ø - txy sen 2Ø

    On - 2 _ 2

    t = OX - OY sen 2Ø + txy cos 2Ø

    Elevado al cuadrado, sumado y simplificado,

    ( On - Ox + Oy) 2 + t 2 = ( Ox - Oy ) 2 + ( txy ) 2

    2 2

    Recordemos que Ox , OY y txy son constantes conocidas que definen el estado plano de tensión, mientras que O y t son variables. Por tanto, Ox + Oy/2 es una constantes C, y el segundo miembro de la ecuación (c) es otra constante R2. con esta substituciones, la ecuación (c) se transforma en :

    ( On - C ) 2 + t2 = R2

    de la forma ( x - C )2 + y2 = R2. representa, por tanto, una circunferencia de radio


    Ox - Oy 2 + t2xy cuyo centro dista C = Ox +Oy/2

    R= 2

    Del origen de abcisas.

    La sig. Figura representa la circunferencia de Mohr para el estado plano de tensiones que se ha estudiado en la seccion anterior. El centro C esta a una distancia OC del origen que es la media aritmética de las tensiones normales, y el radio R es la hipotenusa del triangulo rectángulo CDA. Se puede comprobar fácilmente que las coordenadas de los puntos E, F, G corresponden a las expresiones deducidas en las ecuaciones, y se vera como la circunferencia de Mohr representa gráficamente la variación de las tensiones dadas por las ecuaciones. Las reglas siguientes resumen la construcción de la circunferencia de Mohr.

    REGLAS DEL CIRCULO DE MOHR A LAS TENSIONES COMBINADAS.

    1.- Sobre un sistema de ejes coordenadas rectangulares On - t , se sitúan los puntos de coordenadas ( Ox , txy ) y ( Oy , txy ). Estos puntos representan las tensiones normales y cortantes que actúan sobre las caras X e Y de un elemento. Se considera positiva la tracción y negativa la compresión; la tensión cortante es positiva si el momento del centro del elemento es de sentido horario.

    2.- Se unen los puntos situados mediante una recta. El segmento de dicha recta comprendido entre los dos puntos es el diámetro de una circunferencia cuyo centro es la intersección con el eje O.

    3.- Para los diferentes planos que pasan por el punto en estudio, las componentes de la tensión, normal y cortante, están representadas por las coordenadas de un punto que se mueve por la circunferencia de Mohr.

    4.- El radio con sentido hacia un punto de la circunferencia representa al eje normal al plano cuyas componentes de la tensión viene dadas por las coordenadas del punto de la circunferencia.

    5.- El ángulo entre los radios de dos puntos de la circunferencia de Mohr es el doble del ángulo entre las normales a los dos planos que representan estos dos puntos. El sentido de rotación del ángulo es el mismo en la circunferencia que en la realidad, es decir, si el eje N forma ángulo O con el eje X en sentido antihorario, el radio N del circulo forma un ángulo de 20 con el radio X en sentido antihorario.

    EI.

    La ecuación EI se conoce como el momento flector de una viga en ella E representa el momento de elasticidad de la viga, I el momento de inercia de la sección respecto al eje neutro.

    EI= M

    PORTICO.- Sitio cubierto y con columnas construido en el frente de u templo u otro edificio suntuoso. 2) galeria con arcos o columnas a alo largo de una fachada, patio, etc.


    Votar

    Ingresar una calificación para del 1 al 10, siendo 10 el máximo puntaje.

    Para que la votación no tenga fraude, solo se podrá votar una vez este recurso.

    Comentarios de los usuarios


    Agregar un comentario:


    Nombre y apellido:

    E-Mail:

    Asunto:

    Opinión:



    Aún no hay comentarios para este recurso.
     
    Sobre ALIPSO.COM

    Monografias, Exámenes, Universidades, Terciarios, Carreras, Cursos, Donde Estudiar, Que Estudiar y más: Desde 1999 brindamos a los estudiantes y docentes un lugar para publicar contenido educativo y nutrirse del conocimiento.

    Contacto »
    Contacto

    Teléfono: +54 (011) 3535-7242
    Email:

    Formulario de Contacto Online »